Penn State Ice Hockey Arena Schematic Design Presentation October 5th, 2011

Owner Contract Language

Contractual	Process	Investigation	Vision	Reflection

Sensitive Content Removed for Security Reasons

BIM Uses & Goals

Со	Contractual Process		Inve	nvestigation		Vision			Reflection		
Projec	t Team BIM Go	als							Prelimi	na	try BIM Uses
PRIORITY (HIGH/MED/LOW)	GOAL	DESCRIPTION	POTENTIAL BIM USES	X	PLAN	X	DESIGN	x	CONSTRUCT SITE UTILIZATION	X	OPERATE BUILDING MAINTENANCE
High	Maximize efficiency of design & c both in frequer	coordination process to minimize clashes ncy and severity on-site	s 3D Coordination, Design Authoring, Design Reviews		SITE ANALYSIS	x x	DESIGN AUTHORING		PLANNING CONSTRUCTION SYSTEM DESIGN		SCHEDULING BUILDING SYSTEM ANALYSIS
High	Seamless workflow	Seamless workflow integration of all disciplines				x	3D COORDINATION		3D COORDINATION		ASSET MANAGEMENT
High	Turnover the project on-time and on/under-budget		3D Coordination, 4D modeling			x	STRUCTURAL ANALYSIS		DIGITAL FABRICATION		SPACE MANAGEMENT / TRACKING
High	High Increase sustainable design practices to ensure a more energy efficient product.		Energy Analysis, Sustainability (LEED) Evaluation			x	LIGHTING ANALYSIS		3D CONTROL AND PLANNING		DISASTER PLANNING
Medium	Perform design reviews in a virtual space for a more effective visualization		Design Review			X	ENERGY ANALYSIS		RECORD MODELING		RECORD MODELING
Medium	Achieve desired LEED certification		Sustainability (LEED) Evaluation, Energy Analysis			X	MECHANICAL ANALYSIS	C	OUT OF SCOPE (JF	THESIS PROJECT
Medium	Utilize integrated multi-disciplinary software to become proficient with advanced building modeling and model sharing		Design Authoring			X	SUSTAINABLITY (LEED) EVALUATION				
Medium	m To evaluate constructability and verify the feasibility of an aggressive schedule		4D Modeling, Design Reviews	x	PHASE PLANNING (4D MODELING)	x	PHASE PLANNING (4D MODELING)		PHASE PLANNING (4D MODELING)		PHASE PLANNING (4D MODELING)
				x	EXISTING CONDITIONS MODELING	x x	EXISTING CONDITIONS MODELING		EXISTING CONDITIONS MODELING		EXISTING CONDITIONS MODELING

Communication

Decision Making

BIM EX Process Map

Zones & Loads – Event Level

Zones & Loads – Concourse Level

Zones & Loads – Concourse Level

Zones & Loads – Club Level

HER

Models and Calculations

HPR

Geotechnical Report

HPR

Jeremy Heilman

Alternative Roof Profile

Contractual		ıal	Process	Investigation	Vision	Reflection
Offset Cu	irve F	Profile		64'-0"	84'-0"	
How it eff	fects	design	<u>. </u>			
\Rightarrow	C	Curved from 196	Long Span Trusses: Effe 6' to approximately 250'	cts the design of the long	span trusses both in dept	h and span length
		Dreduct	tion: May increase load tir			
\diamond	0	Assemb on-site	oly: Will the trusses for the	roof be brought to the site	e assembled, or can they l	be constructed
	C	Archited exterior	ctural Interest: Adds archi	tectural form and interest	to the building in both the	interior and
	0	Added \ can crea	Volume Dimension: Adde ate acoustical concerns.	ed volume can add a vent	ilation load depending on	system type and

0

Nico Pugliese

0

Jim Rodgers

Josh Progar

Jeremy Heilman

Josh Progar

1 9

Nico Pugliese

LEED Check List

Contractual	Process	Investigation	Vision	Reflection
Volume Comparison	EED 2009 for New Project Checklist	Construction and Major Renovati	ions	Project Name Date
Construction Manager	Y ? N Y Prereg 1 Construction Activit	Possible Points: 26	Materials and Resources, Con Y ? N X Credit 4 Recycled Content	ntinued 1 to 2
Lighting/Electrical	Credit 1 Site Selection Credit 2 Development Density Credit 3 Brownfield Redevelop Credit 41 Alternative Transport	y and Community Connectivity 5 oment 1 rtation_Public Transportation Access 6	X Credit 5 Regional Materials Credit 6 Rapidly Renewable Material X Credit 7 Certified Wood	ls 1
Mechanical	x Credit 4.2 Atternative Transport x Credit 4.3 Atternative Transport x Credit 4.4 Atternative Transport x Credit 4.4 Atternative Transport	tation-Bicycle Storage and Changing Roon 1 tation-Low-Emitting and Fuel-Efficient Ve 3 tation-Parking Capacity 2	Indoor Environmental Quality Y Prereg 1 Minimum Indoor Air Quality	y Possible Points: 15
Structural	Credit 5.1 Site Development—P Credit 5.2 Site Development—M Credit 5.2 Site Development—M Credit 6.1 Stormwater Design Credit 6.1 Stormwater Design	rotect or Restore Habitat 1 aximize Open Space 1 Quantity Control 1 Duality Control 1	Y Prereq 2 Environmental Tobacco Sm X Credit 1 Outdoor Air Delivery Monit Credit 2 Increased Ventilation X Credit 2 Construction I/O Manager	woke (ETS) Control toring 1 1 1 1 1 1
The Y column means we will get it	Credit 7.1 Heat Island Effect-1 Credit 7.2 Heat Island Effect-7 Credit 7.2 Heat Island Effect-7 Credit 8 Light Pollution Reduce	Ion-roof 1 Ioof 1 Ition 1	Credit 3.2 Construction IAQ Manager Credit 3.2 Construction IAQ Manager Credit 4.1 Low-Emitting Materials—A4 Credit 4.2 Low-Emitting Materials—Fi	ment Plan—Before Occupancy 1 dhesives and Sealants 1 aints and Coatings 1 ooring Systems 1
and prove it The ? column means we think we	Water Efficiency Y Preroq 1 Water Use Reductio Crodit 1 Water Efficient Lanu	Possible Points: 10 n-20% Reduction dscaping 2 to 4	Credit 4.4 Low-Emitting Materials-Cr Credit 5 Indoor Chemical and Pollut Credit 6.1 Controllability of Systems- Credit 6.2 Controllability of Systems-	omposite Wood and Agrifiber Product 1 ant Source Control 1 -Lighting 1 -Thermal Comfort 1
will get it but can't prove it The highlighted	x Credit 2 Innovative Wastewa x Credit 3 Water Use Reductio	ter Technologies 2 n 2 to 4 Possible Points: 35	Credit 7.1 Thermal Comfort—Design Credit 7.2 Thermal Comfort—Verifica Credit 8.1 Daylight and Views—Daylig Credit 8.2 Daylight and Views—Views	tion 1 ht 1
points indicate who is responsible for	Y Prereq 1 Fundamental Commis Y Prereq 2 Minimum Energy Per	sioning of Building Energy Systems formance	Innovation and Design Proce	ss Possible Points: 6
proving it	Y Prereq 3 Fundamental Refrige X Credit 1 Optimize Energy Per Credit 2 On-Site Renewable E X Credit 3 Enhanced Commission X Credit 4 Enhanced Refrigerar X Credit 5 Measurement and Veiller	rant Management formance 1 to 19 nergy 1 to 7 ning 2 tt Management 2 rification 3	Credit 11 Innovation in Design: Spec Credit 12 Innovation in Design: Spec Credit 13 Innovation in Design: Spec Credit 14 Innovation in Design: Spec Credit 15 Innovation in Design: Spec Credit 2 LEED Accredited Professio	ific Title 1 ific Title 1 ific Title 1 ific Title 1 ific Title 1 ific Title 1
Š. J. Se	Credit 6 Green Power	2 s Possible Points: 14	Regional Priority Credits	Possible Points: 4
SIN LEED GOLD	Y Prereq 1 Storage and Collecting Credit 11 Building Reuse—Main Credit 12 Building Reuse—Main X Credit 2 Construction Waster	on of Recyclables tain Existing Walls, Floors, and Roof 1 to 3 tain 50% of Interior Non-Structural Element 1 Management 1 to 2	Credit 1.1 Regional Priority: Specific Credit 1.2 Regional Priority: Specific Credit 1.3 Regional Priority: Specific Credit 1.4 Regional Priority: Specific	Credit 1 Credit 1 Credit 1 Credit 1 Credit 1
http://www.google.com/search?q=leed+gold&http://www.google.com/search?q=leed+gold&http://www.google.com/search	Credit 3 Materials Reuse	1 to 2	Certified 40 to 43 points Silver 50 to 53 point	Possible Points: 110 s Gold 60 to 79 points Platinum 80 to 110

Jeremy Heilman

Josn Progar

NICO PUGIIESE

JIM Rodgers

Collaborative Effects

Contractual	Process	Investigation Vision		n		Reflec	ction
Team Design Goals/E	Effects:						
System Type	Sys	stem Impacted		Play	/ers lı	mpacte	ed
Retractable Roof	Daylighting, Light locations, Mechanical system, Humidity Control, Cost, Schedule, Manufacturing Lead Times, Erection Sequence, Architecture.						\Diamond
Displacement Ventilation	Structural supports of se	ating bowl, Construction	Sequence.	\diamond	\diamond		
Daylighting Options	Mechanical Heating and Architecture.	l Cooling Loads, Structur	al System,		\Diamond		

Site Limitations and Zoning:

System Type	System Impacted	Players Impacted
Zoning Requirements	"Crane" design for roof system did not allow for both sides of structure to have the buttresses.	$\diamond \diamond$
Blasting Ordinance	Follow up with OPP on Procedures	$\diamond \diamond$

0

0

Moving Forward

HPR

Summary

Penn State Ice Hockey Arena Schematic Design Presentation October 5th, 2011

HPR

Organization

Jeremy Heilman O Josh Progar

• Nico Pugliese

Jim Rodgers

HPR

Zones & Loads – Event Level

Zones & Loads – Event Level

Zones & Loads – Concourse Level

Zones & Loads – Concourse Level

HER INTERATED DESIGN

Zones & Loads – Club Level

Zones & Loads – Event Level

Zones & Loads – Event Level

Retractable Roof Design

Contractual	F	Process	Investigation	Vision	Reflection			
Special Loads to Cons	sider:							
Loads		Considerations						
Dynamic		Sudden application of brakes, deceleration of driving mechanism						
Skew Effects		Linear moving panels on parallel tracks (push-pull problems)						
Thermal		Thermal effects on rail systems						
Inertial Forces		Accompanied by increasing or decreasing of speed of driving mechanism due to lateral movement						
Lateral Force on Whee	ls	Horizontal force generated in direction perpendicular to progression of wheels and forced changed in direction due to accuracy in railing						
Collision Load		Load generated	by the driving mechanisn	n bumping into a buffer.				

Special Issues to Consider:

- Waterproofing Considerations: levels of flashing according to objectives of the building, panels do not meet up; usually a 3'-0" different between them.
- Safety Concerns: Marginal wind loads during opening/closing structure; redundancy within structure, adjustments in track system

Alternative Driving Mechanisms

Auvantages	Disauvantages
No alteration to architecture required.	Heavy roof function; not as economic
Closure speed is increased	Dynamic friction coefficient varies depending on railing system
Can be used on an inclined plane	Maintenance is more difficult

Case Studies

Contractual	Process	Investigation	Vision	Reflection
TRANK OME	Bank One Ballpark			Phoenix, AZ
http://www.baseballchronology.com/baseball/Stadium	 Total Cost: Roof Cost: Roof Span: Weight of Roof: Retractable System Mechanism: Case Study: 	\$354,000,000 \$70,000,000 (ap 517'-0" 6,900 ton em: Two telescopin (8) 200 hp moto <i>Good Design</i>	prox. 20%) g sections that bi-part at r ors	nid field.
	Miller Park			Milwaukee, WI
ttp://www.theticketking.com/tickets/miller-park-ticke	 Total Cost: Roof Cost: Roof Span: Weight of Roof: Retractable System Mechanism: Case Study: 	\$400,000,000 \$133,000,000 (a Not noted Not noted em: 7 panel "fan" an Not noted <i>Terrible Design</i>	pprox. 33.25%) rangement; 5 movable pa , <i>major litigation problem</i> :	nels, 2 stationary S
	Reliant Stadium			Houston, TX
htp://www.panoramio.com/photo/241297	 Total Cost: Roof Cost: Roof Span: Weight of Roof: Retractable System Mechanism: Case Study: 	\$417,000,000 \$48,000,000 (ap 984'-0" Not noted tem: Two panel syst 40 wheeled bo <i>Very Successfu</i>	oprox. 11.5%) em, bi parts at midfield gies, (80) 5 hp motors <i>Il Structure</i>	
Jeremy Heilma	n O Josh P	Progar O Nico F	Pugliese O Jim R	odgers

Retractable Roof Construction Case Studies

Contractual Process Investigation Vision Reflection

Embodied Energy: total primary energy consumed during the extraction, transportation, manufacturing and fabrication of construction materials

- Note: Structural systems account for roughly 1/4 of the total embodied energy in building construction.
- Carbon Dioxide Emissions: roughly 10% of all manmade greenhouse gases are due to concrete/steel industries

Material	Embodied Energy	Carbon Dioxide Emissions		
Steel	High	1.50 lb/lb		
Concrete	Very High	1.00 lb/lb		
Wood	Low	0.7 lb/lb		